

New Features of HEC-RAS 4.0

Gary W. Brunner, P.E.
Senior Hydraulic Engineer
Hydrologic Engineering Center
Institute for Water Resources
U.S. Army Corps of Engineers

New Features in HEC-RAS 4.0

- Overflow Gates
- User Defined Rules for Gate Operations
- Pressure Flow in Pipes
- Pump Station Rules
- Hager's Lateral Weir Equation
- Geo-referencing Tools
- Water Quality Temperature Modeling
- Sediment Transport (erosion and deposition)

Overflow Gates

Overflow Gates

Overflow Gates Example

Operation Rules for Gated Structures

- Unsteady Flow Editor "Rules" boundary condition
- Inline/Lateral Structures
- Storage Area Connections
- Controls
 - Gates
 - Weir Coefficients
 - Min/Max Flow
- Rules are evaluated at every time step

User Defined Rules Editor for Operating Gated Structures

Operation Rules Rule Based Operations WOT Operation True False 'Tampa Dam Vol since midnight' (Initial Value = 0) 2 Real 'S-161 Vol since midnight' (Initial Value = 0) 3 Real 'S-161 Vol Diversion' 'Tampa Dam 4 Hour Ave Flow' = Inline Structures: Structure - Total Flow (Fixed)(Hillsborough, 2,600042 Average over previous time window, 4,0) 'Time Step hours' = Solution: Time Step(Value at current time step) 'Time Step seconds' = 3600 * 'Time Step hours' 'Tampa Dam Flow' = Inline Structures: Structure - Total Flow (Fixed) (Hillsborough, 2,600042, Value at current time step) 8 "S-161 Flow" = Inline Structures: Structure - Total Flow (Fixed) (Harney, 1, 73.3. Value at current time step) 9 9 'Tampa Dam Vol since midnight' = 'Tampa Dam Flow' * 'Time Step seconds' + 'Tampa Dam Vol since midnight' 10 10 'S-161 Vol since midnight' = 'S-161 Flow' * 'Time Step seconds' + 'S-161 Vol since midnight' 11 11 12 11 'Day Beg time step' = Time: Day of Month(Begining of time step) 12 12 'Day End time step' = Time: Day of Month(End of time step) 13 13 14 50 If ('Day Beg time step' <> 'Day End time step') Then 'HR 24hour ave Flow' = 'Tampa Dam Vol since midnight' + 'S-161 Vol since midnight' / 86400 15 14 15 15 16 'Tampa Dam Vol since midnight' = 0 16 17 'S-161 Vol since midnight' = 0Insert New Operation Current Operation Changes New Variable Get Sim Value Set Operational Param Branch (If/Else) Math Table Disable Comment Copy Get Simulation Value Assian Result Set Node Location Inline Structures Value at current time step River: Harney Existing Variable Structure - Total Flow (Fixed) = Structure - Total Flow (Desired) New Variable Reach: 1 Structure - Flow Additional S-161 Flow 73.3 IS Structure - Flow Maximum Structure - Flow Minimum Structure - Total Gate Flow Structure - Total Gate Flow Maxi Structure - Total Gate Flow Minir Christian Cata Master Catting (Simulation variables in bold are only available for the current structure) OK. Cancel

Tampa Bay Water System Overview

TBW S-161 Diversion Structure Rules

- Get previous 24 hour outflow
 - Outflow includes Tampa Dam & S-161
- Determine allowable diversion:

Discharge at Tampa Dam (mgd)	Withdrawal from Middle Pool (mgd)		
Less than 65	0		
65-97	10% of the discharge at Tampa Dam		
97-139	10-30% of the discharge		
139-647	30% of the discharge		
More than 647	194		

- Adjust S-161 gates to get allowable diversion in ~20 hours
- Close gates when/if:
 - Maximum volume diverted
 - 4 hour running average at Tampa Dam < 10cfs

Animation of Gate Operations Tampa Bay Water Project Hillsborough River – Harney Canal

Pressurized Pipe Flow

- Priessman Slot insertion of an infinitesimal slot into the XS lid
- Any Pipe Shape
- Allows the water surface to rise to the pressure head (hydraulic grade line)

Pressurized Pipe Flow

- Conveyance and wetted perimeter are cut off at top of pipe
- Area is added, but it is negligible
- Conveyance curve is truncated to local minimum to increase stability

Pump Station Override Rules

Pump Station Data Editor				
Pump Station Name: Pump15	•	↓ ↑ Renam	ne Pump Station	
Pump Connection Data Pump Group Data Advanced Control Rules				
Add New R	ule Dele	te Rule Cop	y Rule ↓ 1	
Pump Rules				
Day/Hour based rule - flow max = 0 start at: 28AUG 0000 end at: 28AUG 1330 Day/Hour based rule - flow max = 250 start at: 28AUG 1330 end at: 28AUG 1530 Day/Hour based rule - flow max = 750 start at: 28AUG 1530 end at: 28AUG 1545 Day/Hour based rule - flow max = 500 start at: 28aug 1545 end at: 2aug 1600 Day/Hour based rule - flow max = 0 flow min = 0 start at: 28AUG 1600 end at: 13SEP 0900				
Edit Current Selected Rule				
Rule Flow Maximum:	250	Rule Flow Minimun	···	
Transition (min):	5	Transition (min):	5	
Rule Start Day: Rule End Day:	28AUG 28AUG	Rule Start Hour: Rule End Hour:	1330 1530	
Plot Pump Curves		OK	Cancel	

Pressurized Pipes, Pump Station, And Levee Breach Animation

Hager's Lateral Weir Equation

$$Q = CLH^{3/2}$$

$$C = \frac{3}{5}C_0 \sqrt{g} \left[\frac{1-W}{3-2y-W} \right]^{0.5} \left\{ 1 - (\beta + S_0) \left[\frac{3(1-y)}{y-W} \right]^{0.5} \right\}$$

$$W = \frac{h_w}{H_t + h_w} \qquad y = \frac{H + h_w}{H_t + h_w} \qquad C_0 = Function(weir shape)$$

Geo-referencing Tools in HEC-RAS

From "stick figure" to real locations

Geo- referencing Tools in HEC-RAS

- Fix the cross sections at "known" locations
- RAS will help move the rest of the sections

Geo-referencing

Move Cut Line Upstream/Downstream

Geo-referencing

Edit | Move Object

Geo-referencing: New XS Interpolation

Water Quality (Temperature) Model

- Based on unreleased version of CE-QUAL-RIV1
- Numerical Scheme
 - Finite Volume
 - Variable grid size
 - Automatic time step selection
- Full energy budget

Meteorological Data Editor – Solar Radiation

Source/Sink Term for Temperature (Energy Budget)

f (site location, time of day, day of year, atmospheric turbidity, cloud cover)

f (air temperature, water temperature)

f (temperature gradient, wind, a&b)

latent heat (ge) f (vapor pressure gradient, wind, a&b)

$$q_{net} = q_{sw} + q_{lwn} + q_h + q_e$$

- ground heat conduction
- shading (topographic, riparian)

Time Series Plots

Water temperature

Solar Radiation

Profile Plot of Temperature

Map View

Mobile Bed Sediment Transport

- Quasi-Steady Hydrodynamics
- Transport Capacity
- Sediment continuity
- Sorting and Armoring
- Erosion and Deposition
- Graphical User Design

Transport Potential Functions

- Ackers-White
- Englund-Hansen
- Laursen (Copland)
- Myer-Peter-Meuler
- Toffaleti
- Yang (Sand and Gravel)
- Wilcock

Transport Capacity by Multiple Grain Sizes

- Bed Material and Inflowing Load divided into separate grain classes (up to 20)
- Transport potential is calculated for each grain size

 Transport Capacity = (Transport Potential for each grain size) X (fraction of that material in active layer of bed)

Sediment Continuity: Exner Equation

$$(1 - \lambda_p) B \frac{\partial \eta}{\partial t} = -\frac{\partial Q_s}{\partial x}$$

Temporal Constraints on Eroding and Depositing

- Erosion and deposition does not occur instantaneously.
- Deposition is based on settling velocity:
 - Deposition efficiency coefficient = $\frac{V_s(i) \cdot \Delta t}{D_e(i)}$
- Erosion is based on "Characteristic Flow Length"
 - Erosion = (Gs Qs) x Ce Entrainment Coefficient
 - Where:

$$C_e = 1.368 - e^{\frac{L}{30 \cdot D}}$$

Sorting and Armoring

Cover Layer

Subsurface Layer

Active Layer

Diagramed and Conceptualized HEC 6 Code

Inactive Layer

Bedrock Layer

Exner 5 implemented Currently in RAS

Also Simple Active Layer Method

* Erosion can be further constrained by the cover Layer

Erosion and Deposition

to RAS Cross Sections

 Cross Sections Bridges

RAS computations modified to compute bed changes and modify cross sections before each time step

Example Application: Euclid Creek

Animation of Bed Movement

